The Role of the PI3K/AKT2 Pathway in Anti-Estrogen Resistant Breast Cancer

Loading...
Thumbnail Image

Authors

Busch, Stephanie M.

Issue Date

2004

Type

Presentation

Language

en_US

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Breast cancer is one of the most common forms of cancer in women in the western world. Estrogen has been shown to play a key role in the development and progression of breast cancer with 2/3 of tumors expressing estrogen receptor-α (ERα). Under prolonged exposure to endogenous estrogens, breast tumors develop. Over the past two decades, Tamoxifen has been the most effective anti-estrogen therapy in the treatment of ERα-positive breast cancer (Osbourne et al., 1998). Unfortunately, patients eventually acquire resistance to Tamoxifen within four to eight years. Previous research has shown activation of PI3K/AKT2 and Ras/MAPK signaling pathways lead to tamoxifen resistance (Atanaskova, N et al., 2002). The purpose of this project is to establish the role of the PI3K/AKT2 pathway and its downstream signaling molecules, specifically mTOR, in anti-estrogen treatment. Inhibition of mTOR signaling by rapamycin was done to determine if p70 S6 Kinase and 4E-BP1 activation could be inhibited. In turn, cell cycle progression and tumor growth would, in theory, stop; therefore, tamoxifen resistance could be reversed in tumor cells that overexpress activated AKT2. Western blot analyses were conducted to visualize phosphorylated levels of 4E-BP1 and p70 S6 Kinase in EGFR/MCF-7 and MCF-7 cells. Overall, this research has implications for improving estrogen-mediated breast cancer treatment with Tamoxifen.

Description

1 broadside : ill.
Diebold Scholar

Citation

Publisher

Kalamazoo College

License

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN