JavaScript is disabled for your browser. Some features of this site may not work without it.
  • About K
  • Academics
  • Admission
  • Alumni Relations
  • Giving to K
  • News & Events
  • Student Life
  • HORNET HIVE
  • ATHLETICS
  • SITEMAP
  • WEBMAIL
    • Login
    View Item 
    •   CACHE Homepage
    • Academic Departments, Programs, and SIPs
    • Physics
    • Physics Senior Integrated Projects
    • View Item
    •   CACHE Homepage
    • Academic Departments, Programs, and SIPs
    • Physics
    • Physics Senior Integrated Projects
    • View Item

    Alternative Methods for Ultrasonic Welding of Advanced Thermoplastic Composites

    Thumbnail
    View/Open
    Searchable PDF/Kalamazoo College Only (1.807Mb)
    Date
    2022-11-01
    Author
    Carman, Vaughn A.
    Metadata
    Show full item record
    Abstract
    The fusion bonding of advanced thermoplastic composites has a variety of applications in aerospace, automotive, medical, consumer electronics and energy markets. High-power ultrasonic welding is a state-of-the-art manufacturing process being used to join these materials. This welding process uses high frequency, moderate force, and low amplitude mechanical vibrations to generate heat. When adequate temperatures are reached at the weld interface, localized melting occurs and upon cooling, an intermolecular bond is formed between the materials. It is the viscoelastic nature of polymers that facilitates heating, enabling the bonding process. This project was done in collaboration with Agile Ultrasonics Corp, an American company based out of Hilliard, OH. Agile entered the industry in 2017, specializing in the joining and consolidation of thermoplastic materials, including carbon-fiber-reinforced polymers (specifically: PEEK - Polyether ether ketone, PAEK - Polyaryletherketone, PEKK - Polyetherketoneketone, PPS - Polyphenylene sulfide) [1]. Agile collaborates with industry-leading manufacturers of aerospace and consumer electronic components on a variety of system design projects. They have been developing a unique process that continuously joins fiber reinforced thermoplastic tape, braid, or pre-consolidated plate materials. One of the primary objectives of this project is to help refine this process and make it more robust. The majority of the content in this report focuses on investigating anvil materials with properties that can improve the quality of the scan welds being produced by Agile. More specifically, this project investigates the effect that the elastic modulus within compliant anvil materials has on the amount of heat being generated at the weld joint. The first section will focus on background information, and the following two will go into the work that was performed and the test results. Data was collected on various materials and a variety of tests were designed and performed to find an array of compliant substrates that can be used by Agile.
    URI
    https://cache.kzoo.edu/handle/10920/44676
    Collections
    • Physics Senior Integrated Projects [335]

    Browse

    All of CACHECommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV
    Logo

    Kalamazoo College
    1200 Academy Street
    Kalamazoo Michigan 49006-3295
    USA
    Info 269-337-7000
    Admission 1-800-253-3602

    About K
    Academics
    Admission
    Alumni Relations
    Giving to K
    News & Events
    Student Life
    Sitemap
    Map & Directions
    Contacts
    Directories
    Nondiscrimination Policy
    Consumer Information
    Official disclaimer
    Search this site


    Academic Calendars
    Apply
    Bookstore
    Crisis Response
    Employment
    Library
    Registrar
    DSpace Express is a service operated by 
    Atmire NV