Utilizing Combined Point Array’s in Hepatitis B Virus Drug-Bound State Investigative Research
Abstract
Viruses attach to a host cell by administering a molecular hijacking and in turn, replicating the genetic material enveloped within their capsid shells to spread viral particles. Viruses are complex in nature, coming in a multitude of different shapes and sizes. A promising feature of spherically shaped viruses like the Hepatitis B virus, is that they orient themselves to a set of distinct points called point array’s. A virus's genetic material is positioned at multiple radial levels within an icosahedral capsid. Point array’s give the geometric constraints that viruses with spherical icosahedral symmetry adhere to. By combining a virus’s network of best fitting point arrays, meaning the arrays that are the smallest distance away from capsid protrusions, we are able to compare the mechanism of the assembly and disassembly of viral capsid formations and essentially capsid stability. Within this study, a combined point array analysis was applied to the two strains of the Hepatitis B virus and five separate drugs that cause the mis-assembly and distortion of Hepatitis B virus capsids. The most significant locations on these drugs were identified in an analysis where specific amino acid sequencing at these locations were identified and compared. The results showed the most prominent locations in which HBV is dismantled and the capsid is changed after the drugs have induced mis-assembly. These locations were then compared to the ADYW strain of the HBV for similarities and differences in the virion capsid structure.