JavaScript is disabled for your browser. Some features of this site may not work without it.
  • About K
  • Academics
  • Admission
  • Alumni Relations
  • Giving to K
  • News & Events
  • Student Life
  • HORNET HIVE
  • ATHLETICS
  • SITEMAP
  • WEBMAIL
    • Login
    View Item 
    •   CACHE Homepage
    • Academic Departments, Programs, and SIPs
    • Physics
    • Physics Senior Integrated Projects
    • View Item
    •   CACHE Homepage
    • Academic Departments, Programs, and SIPs
    • Physics
    • Physics Senior Integrated Projects
    • View Item

    In vivo Optical Measurement of Bone Strength Using Raman Spectroscopy

    Thumbnail
    View/Open
    Searchable PDF/Kalamazoo College Only (592.4Kb)
    Date
    2019
    Author
    Emenheiser, Anna M.
    Metadata
    Show full item record
    Abstract
    Although there are a variety of clinical techniques to measure bone mineralization and structure, bone mineral density alone is not fully indicative of bone strength. Raman spectroscopy is a technique that provides chemical information that cannot be measured by standard methods. In this study, transcutaneous measurements of bone were made using Raman spectroscopy. Using partial least squares regression, a model was created that uses a Raman spectrum to predict three biomechanical properties: areal bone mineral density, volumetric bone mineral density, and maximum torque. These properties were measured for each bone using dual-energy X-ray absorptiometry (DEXA), micro computerized tomography (micro-CT) imaging, and torsion testing, respectively. Recently, our group empirically found significant correlations between the Raman predicted values and the reference values for each of the three parameters. We then began to investigate how the predictive model works in order to gain a deeper understanding of the relevant chemical information and limiting factors in the prediction. We can then begin to explore possible improvements to the prediction technique in order to create a more robust method that can be used across a variety of optical systems, and potentially give insight into bone chemistry.
    URI
    http://hdl.handle.net/10920/36933
    Collections
    • Physics Senior Integrated Projects [325]

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV
    Logo

    Kalamazoo College
    1200 Academy Street
    Kalamazoo Michigan 49006-3295
    USA
    Info 269-337-7000
    Admission 1-800-253-3602

    About K
    Academics
    Admission
    Alumni Relations
    Giving to K
    News & Events
    Student Life
    Sitemap
    Map & Directions
    Contacts
    Directories
    Nondiscrimination Policy
    Consumer Information
    Official disclaimer
    Search this site


    Academic Calendars
    Apply
    Bookstore
    Crisis Response
    Employment
    Library
    Registrar
    DSpace Express is a service operated by 
    Atmire NV