Show simple item record

dc.contributor.advisorBartz, Jeffrey A., 1963-
dc.contributor.advisorPalyvoda, Olena
dc.contributor.authorVangipuram, Kiran V.
dc.date.accessioned2013-07-05T18:53:00Z
dc.date.available2013-07-05T18:53:00Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10920/28878
dc.descriptionv, 23 p.en_US
dc.description.abstractThe biocompatibility of substrates to promote neuronal growth and attachment shows potential for neuronal therapies. With the current advancement in micro and nanofabrication, studies are being done on the biocompatibility of surfaces for prosthetic devices, leading to possible neural stimulation, and nerve regeneration. This research is a continuation of the project "Wireless Neural Implant of Smart Sensors and Integrated Micro-systems (SSIM)", in the Electrical and Computer Engineering Department at Wayne State University. Interactions between primary rat cortical neurons and different substrates, along with ways to control the interaction using self-assembled mono layers (SAMs) were studied for the design and development of neural'implant. Fetal human derived neuronal stem cell lines-more specifically ReNcells VM were used in this project because of their ability to differentiate into neurons. This capability helped to investigate neuronal cell attachment, growth, establishment of network, and compliance to patterns on different materials in vitro. Allowing stem cells to rebuild parts of the nervous system offers significant promise for the restoration of neuronal function. As such, the biocompatibility and attachment of substrates in order to promote neuronal growth was tested during the course of this project. It is hypothesized that amino SAMs coated onto gold promotes attachment of differentiated ReNcells as it has been shown to promote primary rat cortical neuron attachment previously. The results from this experiment will be helpful in developing strategies for neural implant device using human cell lines such as ReNcell VM.en_US
dc.description.sponsorshipElectrical and Computer Engineering. Children's Research Center of Michigan. Detroit, Michigan.
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherKalamazoo Collegeen_US
dc.relation.ispartofKalamazoo College Biology Senior Individualized Projects Collection
dc.relation.ispartofseriesSenior Individualized Projects. Biology;
dc.rightsU.S. copyright laws protect this material. Commercial use or distribution of this material is not permitted without prior written permission of the copyright holder.
dc.titleDesigning Biocompatible Surfaces for Implantable Devices and use of Human Differentiated Stem Cells as a Model for Neuronal Replacement using Alkanethiol Self-Assembled Monolayers (SAMs)en_US
dc.typeThesisen_US
KCollege.Access.ContactIf you are not a current Kalamazoo College student, faculty, or staff member, email dspace@kzoo.edu to request access to this thesis.


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Biology Senior Individualized Projects [1489]
    This collection includes Senior Individualized Projects (SIP's) completed in the Biology Department. Abstracts are generally available to the public, but PDF files are available only to current Kalamazoo College students, faculty, and staff.

Show simple item record