JavaScript is disabled for your browser. Some features of this site may not work without it.
  • About K
  • Academics
  • Admission
  • Alumni Relations
  • Giving to K
  • News & Events
  • Student Life
  • HORNET HIVE
  • ATHLETICS
  • SITEMAP
  • WEBMAIL
    • Login
    View Item 
    •   CACHE Homepage
    • Academic Departments, Programs, and SIPs
    • Physics
    • Physics Senior Integrated Projects
    • View Item
    •   CACHE Homepage
    • Academic Departments, Programs, and SIPs
    • Physics
    • Physics Senior Integrated Projects
    • View Item

    Scanning Light-Spot Measurements on Grain Boundaries in Polycrystalline-Silicon Solar Cells

    Thumbnail
    View/Open
    Searchable PDF / Kalamazoo College Only (2.006Mb)
    Date
    1981
    Author
    Esman, Ronald D.
    Metadata
    Show full item record
    Abstract
    The theoretical electrical effects of grain boundaries in polycrystalline' silicon are discussed. Zook's model for the electrical effects of a grain boundary is reviewed. Then experimental techniques, with which to test and apply the model, are discussed. A microprocessor-controlled XY table was used to generate scans of a light spot across grain boundaries in polycrystalline-silicon solar cells. An interface was designed to duplicate the induced-current response on an XY-recorder display. Zook's model was then checked for validity by the following measurements. Grain-boundary scans were performed at two laser wavelengths (.6328µm and 1.152µm) and with a filtered, collimnated tungsten source. The grain-boundary surface recombination velocity, s. was determined to be (2.3 ± 0.2) x 10 3 cm/sec. The intragranular minority-carrier diffusion length, L. was also determined: L = (200 ± 25)µm for Monsanto 1mm grain-size material. After passivation, s was reduced to (3.5 ± 0.1) x 10 2 cm/sec. and L was reduced to (140 ± 15µm. The L measurement was observed to be independent of the wavelength of the incident light. which suggest that Zook's model of the intragranular material is valid. However. the observed dependence of s on the wavelength of the incident light does not support Zook's grain-boundary model, but may be explained within the model.
    URI
    http://hdl.handle.net/10920/23390
    Collections
    • Physics Senior Integrated Projects [329]

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV
    Logo

    Kalamazoo College
    1200 Academy Street
    Kalamazoo Michigan 49006-3295
    USA
    Info 269-337-7000
    Admission 1-800-253-3602

    About K
    Academics
    Admission
    Alumni Relations
    Giving to K
    News & Events
    Student Life
    Sitemap
    Map & Directions
    Contacts
    Directories
    Nondiscrimination Policy
    Consumer Information
    Official disclaimer
    Search this site


    Academic Calendars
    Apply
    Bookstore
    Crisis Response
    Employment
    Library
    Registrar
    DSpace Express is a service operated by 
    Atmire NV